If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+8x-190=0
a = 3; b = 8; c = -190;
Δ = b2-4ac
Δ = 82-4·3·(-190)
Δ = 2344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2344}=\sqrt{4*586}=\sqrt{4}*\sqrt{586}=2\sqrt{586}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{586}}{2*3}=\frac{-8-2\sqrt{586}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{586}}{2*3}=\frac{-8+2\sqrt{586}}{6} $
| 2+6x=7x-6 | | -4K=-8-6k | | 298=(9-x)+(14-x) | | 5n-3n+3=17 | | 3k=-2k-2 | | 4(5n−7)=10n+2 | | 2y-53=78 | | 4.9x^2+5x-1.4=0 | | 3n+6-6n=3 | | m-46=32 | | 34x-2=26x+2 | | -14.7k+19.07=-14.74-16.8k | | -y+15=55 | | t-1÷3=5-t | | 2/3x+x=600 | | (6q+1)(5q−4)=0 | | (2a+7)+109=180 | | 15u+5=-18+17u-3 | | t+10=10 | | 13n+1=15n-19-4n | | 12=2+5u | | 4x+1+5+x+x=180 | | -5v-15=-9v+17 | | y/5-3=-23 | | 4(2c-10)=16 | | 3=2x-6x+3 | | 4/3x=-13 | | 6=2(-2x-1)=24 | | x(3)-10=2 | | V=3.14(6.25)x | | 42/49=x/7 | | 20x-68=4x-15 |